
hub2hub
Release 0.1.0

Nard Strijbosch

Jun 01, 2021

GETTING STARTED

1 Installation 1

2 Hubs 3

3 Sensors 9

4 Motors 17

5 PUPhub 19

6 Led 21

7 Button 23

8 Motion 25

9 Device 27

10 Motor 29

11 Barcode 33

12 Motion Mario 35

13 Pants (Mario) 37

Index 39

i

ii

CHAPTER

ONE

INSTALLATION

The following steps guide you through the process to install the hub2hub library. This installation is only required on
the LEGO Eduction SPIKE Prime hub or the LEGO MINDSTORMS Robot Inventor hub. For the PoweredUP hubs
used in your project it is sufficient to update them with the latest official firmware via the PoweredUP app.

1.1 Step 1

If you did not update your SPIKE Prime software yet, install one of the latest versions of the SPIKE Prime app (1.3.5,
1.3.4 or 1.3.3) and connect your device. If the app asks for a hub update, perform the hub update.

Warning: This library does not work when using the MINDSTORMS Robot Inventor app. Due to a firmware
difference, the Bluetooth module is not available when using the MINDSTORMS Robot Inventor App and corre-
sponding firmware. Luckily you can just connect your MINDSTORMS hub to the SPIKE Prime app and update
the SPIKE PRIME Firmware on the hub.

1.2 Step 2

Download and open the project: Instal_hub2hub_v011.llsp

1.3 Step 3

Set the SPIKE Prime execution mode in download mode, and select an unused project slot.

1

https://github.com/NStrijbosch/hub2hub/blob/main/install/Install_hub2hub_v011.llsp?raw=true

hub2hub, Release 0.1.0

1.4 Step 4

Run the project by pressing the play button and wait until the hub is powered down. This process can take up to a
minute. If you use a USB cable to connect the hub, the hub will probably restart automatically.

1.5 Step 5

Installation is successful. The hub2hub library is now installed on your hub. You can now safely use the slot you used
for this installation for a new project.

Warning: Firmware updates of the hub are likely to remove the library from the filesystem of the hub. Hence, this
procedure should be repeated if a firmware update removed the library from the hub.

2 Chapter 1. Installation

CHAPTER

TWO

HUBS

2.1 Technic Hub

class TechnicHub(bt_handler)
Class to control a Technic Hub.

Parameters bt_handler – The bluetooth handler.

led
Led

motion
Motion

port.A.device

port.B.device

port.C.device

port.D.device
Device

port.A.motor

port.B.motor

port.C.motor

3

hub2hub, Release 0.1.0

port.D.motor
Motor

2.1.1 Example

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

k = 0
while True:

Thub.led(k%11)

yaw, pitch, roll = Thub.motion.yaw_pitch_roll()
shaken = Thub.motion.was_gesture(3)

print('Roll angle: ', roll, 'Shaken?: ', shaken)

k+=1
sleep_ms(1000)

2.2 City Hub

class CityHub(bt_handler)
Class to control a Technic Hub.

Parameters bt_handler – The bluetooth handler.

4 Chapter 2. Hubs

hub2hub, Release 0.1.0

led
Led

port.A.device

port.B.device
Device

port.A.motor

port.B.motor
Motor

2.2.1 Example

from hub2hub import CityHub, ble_handler
from time import sleep_ms

Initialize ble handler and a city hub
ble = ble_handler()
Chub = CityHub(ble)

connect to a city hub: press green button on the city hub
Chub.connect()

k = 0
while True:

Chub.led(k%11)

k+=1
sleep_ms(1000)

2.3 Remote

class Remote(bt_handler)
Class to control a PoweredUP remote

2.3. Remote 5

hub2hub, Release 0.1.0

Parameters bt_handler – The bluetooth handler.

led
Led

left.plus

left.red

left.min

right.plus

right.red

right.min
Button

2.3.1 Example

from hub2hub import Remote, ble_handler
from time import sleep_ms

Initialize ble handler and a remote
ble = ble_handler()
Remote = Remote(ble)

connect to a remote: press green button on the remote
Remote.connect()

k = 0
while True:

Remote.led(k%11)
print('Left plus pressed: ', Remote.left.plus.is_pressed())
print('Right plus was pressed: ', Remote.right.plus.was_pressed())

k+=1
sleep_ms(1000)

6 Chapter 2. Hubs

hub2hub, Release 0.1.0

2.4 Mario

class Mario(bt_handler)
Class to control a LEGO Mario

Parameters bt_handler – The bluetooth handler.

barcode
Barcode

motion
MotionMario

pants
Pants

2.4.1 Example

from hub2hub import ble_handler, Mario
from time import sleep_ms

ble = ble_handler()
mario = Mario(ble)

mario.connect()

while True:
gesture = mario.motion.was_gesture(1024)
barcode, color = mario.barcode.get()
pants = mario.pants.get()
print('barcode: ', barcode, 'color: ', color, 'gesture: ', gesture, 'pants: ', pants)
sleep_ms(100)

2.4. Mario 7

hub2hub, Release 0.1.0

8 Chapter 2. Hubs

CHAPTER

THREE

SENSORS

3.1 Color Sensor

The following modes are supported by the color sensor.

Mode Name Values Unit Datasets
0 Color 0-10 Index 1
1 Reflected light 0-100 Percentage 1
2 Ambient light 0-100 Percentage 1
3 Control LEDs 0-100 Percentage 3
4 Raw reflected light 0-1024 RAW 2
5 RGB I 0-1024 RAW 4
6 HSV 0-360 RAW 3
7 SHSV 0-360 RAW 4

3.1.1 Examples

Measure ambient light

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Color sensor
ColorSensor = Thub.port.A.device

Set mode to ambient light
ColorSensor.mode(2)

k = 0
(continues on next page)

9

hub2hub, Release 0.1.0

(continued from previous page)

while True:
Thub.led(k%11)

ambient, = ColorSensor.get()

print('Ambient light: ', ambient)

k+=1
sleep_ms(1000)

Control LEDs

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Color sensor connected to port A
ColorSensor = Thub.port.A.device

k = 0
while True:

Thub.led(k%11)

Led1 = 9 if k%3 == 0 else 0
Led2 = 9 if k%3 == 1 else 0
Led3 = 9 if k%3 == 2 else 0

ColorSensor.mode(3,[Led1, Led2, Led3])

k+=1
sleep_ms(1000)

3.2 Ultrasonic Sensor

The following modes are supported by the ultrasonic sensor.

10 Chapter 3. Sensors

hub2hub, Release 0.1.0

Mode Name Value Unit Datasets
0 Distance long 0-250 cm 1
1 Distance short 0-32 cm 1
2 SINGL? 0-250 cm 1
3 LISTN? 0-1 ST? 1
4 Time Raw 0-14577 us 1
5 Control LEDs 0-100 Percentage 4
6 PING? 0-100 Percentage 1
7 A/D Raw? 0-1024 Raw 1

3.2.1 Examples

Measure distance

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Ultrasonic sensor connected to port A
USSensor = Thub.port.A.device

Set mode to distance long
USSensor.mode(0)

k = 0
while True:

Thub.led(k%11)

distance, = USSensor.get()

print('distance: ', distance)

k+=1
sleep_ms(1000)

3.2. Ultrasonic Sensor 11

hub2hub, Release 0.1.0

Control LEDs

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Ultrasonic sensor connected to port A
USSensor = Thub.port.A.device

k = 0
while True:

Thub.led(k%11)

Led1 = 9 if k%4 == 0 else 0
Led2 = 9 if k%4 == 1 else 0
Led3 = 9 if k%4 == 2 else 0
Led4 = 9 if k%4 == 3 else 0

USSensor.mode(5,[Led1, Led2, Led3, Led4])

k+=1
sleep_ms(1000)

3.3 Force Sensor

The following modes are supported by the force sensor.

Mode Name Value Unit Datasets
0 Force 0-10 N 1
1 Touch 0-1 ST 1
2 Tap 0-3 TEV 1
3 Peak force 0-10 N 1
4 Force Raw 0-1023 RAW 1
5 Peak force Raw 0-1023 RAW 1

12 Chapter 3. Sensors

hub2hub, Release 0.1.0

3.3.1 Examples

Measure RAW force

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Force sensor connected to port A
ForceSensor = Thub.port.A.device

Set mode to raw force
Force.mode(4)

k = 0
while True:

Thub.led(k%11)

raw_force, = ForceSensor.get()

print('Raw force: ', raw_force)

k+=1
sleep_ms(1000)

3.4 Color/Distance Sensor

The following modes are supported by the color/distance sensor.

Mode Name Value Unit Datasets
0 Color 0-10 Index 1
1 Distance 0-10 Distance 1
2 Presses 0-. . . Count 1
3 Reflected light 0-100 Percentage 1
4 Ambient Light 0-100 Percentage 1
5 Control LED color 0-10 Index 1
6 RGB I 0-1023 RAW 3
7 Transmit data with infra red N/A N/A N/A

3.4. Color/Distance Sensor 13

hub2hub, Release 0.1.0

3.4.1 Examples

Measure distance

3.5 WeDo Distance Sensor

The following modes are supported by the WeDo distance sensor.

Mode Name Value Unit Datasets
0 Distance 0-10 Distance 1
1 Count 0-.. Count 1

3.5.1 Examples

Measure count

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

WeDo distance sensor connected to port A
WeDoDistance = Thub.port.A.device

Set mode to count of taps on the sensor
WeDoDistance.mode(1)

k = 0
while True:

Thub.led(k%11)

count, = WeDoDistance.get()

print('Count: ', count)

k+=1
sleep_ms(1000)

14 Chapter 3. Sensors

hub2hub, Release 0.1.0

3.6 WeDo Tilt Sensor

The following modes are supported by the WeDo tilt sensor.

Mode Name Value Unit Datasets
0 Angle -45 - 45 Distance 2
1 Tilt 0-10 Count 1

3.6.1 Examples

Measure tilt angles

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

WeDo tilt sensor connected to port A
TiltSensor = Thub.port.A.device

Set mode to angle
TiltSensor.mode(0)

k = 0
while True:

Thub.led(k%11)

angle_x, angle_y = TiltSensor.get()

print('angle x: ', angle_x, 'angle y: ', angle_y)

k+=1
sleep_ms(1000)

3.6. WeDo Tilt Sensor 15

hub2hub, Release 0.1.0

16 Chapter 3. Sensors

CHAPTER

FOUR

MOTORS

4.1 Basic Motor

All PoweredUP basic motors currently supported are:

4.2 Servomotors

All PoweredUP servo motors currently supported are:

The modes of each of the servo motors are given below.

Mode Name Value Unit Datasets
0 Power 0-100 Percentage 1
1 Speed 0-100 Percentage 1
2 Relative Position Degrees 1
3 Absolute Position -180 - 179 Degrees 1
4 Load 0-100 Percentage 1

17

hub2hub, Release 0.1.0

4.2.1 Example

Run at constant speed

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Servo motor connected to port A
Motor = Thub.port.A.motor

Set speed to 50
Motor.run_at_speed(50)

Wait 1 second
sleep_ms(1000)

Set speed to 0
Motor.run_at_speed(0)

18 Chapter 4. Motors

CHAPTER

FIVE

PUPHUB

class PUPhub(bt_handler)
General LEGO PoweredUP hub class

The methods included in this class are identical for each PoweredUP hub

Replace PUPhub with

• TechnicHub for

• CityHub for

• Remote for

• Mario for

connect(timeout=30000, address=None)
Connect to the PoweredUP hub

Parameters

• timeout – time of scanning for devices in ms, default is 30000

• address – mac address of device (optional), connect to a specific device if set

disconnect()
Disconnect from a PoweredUP hub

is_connected()
Check if hub is connected

Returns True if hub is connected

Return type boolean

19

hub2hub, Release 0.1.0

5.1 Example

from hub2hub import CityHub, ble_handler
from time import sleep_ms

Initialize ble handler and a city hub
ble = ble_handler()
Chub = CityHub(ble)

connect to a city hub: press green button on the city hub
Chub.connect()

k = 0
while True:

Chub.led(k%11)

k+=1
sleep_ms(1000)

20 Chapter 5. PUPhub

CHAPTER

SIX

LED

Led(color)
Set LED color

Supported on:

Parameters color (integer) – color index

6.1 Example

from hub2hub import CityHub, ble_handler
from time import sleep_ms

Initialize ble handler and a city hub
ble = ble_handler()
Chub = CityHub(ble)

connect to a city hub: press green button on the city hub
Chub.connect()

k = 0
while True:

Chub.led(k%11)

k+=1
sleep_ms(1000)

21

hub2hub, Release 0.1.0

22 Chapter 6. Led

CHAPTER

SEVEN

BUTTON

class Button
Class to control a button

is_pressed()
check if button is pressed

Returns True if button is pressed; False if button is not pressed

was_pressed()
check if button was pressed since last call

Returns True if button was pressed since last call; False if button was not pressed since last call

presses()
Number of presses since last call

Returns integer value of number of presses since last call

7.1 Example

from hub2hub import Remote, ble_handler
from time import sleep_ms

Initialize ble handler and a remote
ble = ble_handler()
Remote = Remote(ble)

connect to a remote: press green button on the remote
Remote.connect()

k = 0
while True:

Remote.led(k%11)
print('Left plus pressed: ', Remote.left.plus.is_pressed())
print('Right plus was pressed: ', Remote.right.plus.was_pressed())

k+=1
sleep_ms(1000)

23

hub2hub, Release 0.1.0

24 Chapter 7. Button

CHAPTER

EIGHT

MOTION

class Motion
Class to handle motion sensor in PoweredUP hub

Supported on:

accelerometer()
Measure acceleration around three axis

Returns accleration around x,y,z axis

Return type tuple

gyroscope()
Measure gyro rates around three axis

Returns gyro rates around x,y,z axis

Return type tuple

yaw_pitch_roll()
Measure yaw pitch roll angles

Returns yaw pitch roll angle

Return type tuple

8.1 Example

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

k = 0
while True:

Thub.led(k%11)

(continues on next page)

25

hub2hub, Release 0.1.0

(continued from previous page)

yaw, pitch, roll = Thub.motion.yaw_pitch_roll()
shaken = Thub.motion.was_gesture(3)

print('Roll angle: ', roll, 'Shaken?: ', shaken)

k+=1
sleep_ms(1000)

26 Chapter 8. Motion

CHAPTER

NINE

DEVICE

class Device
Class to control PoweredUp devices connected to a physical port

Supported on:

mode(mode, *data)
Set the mode of the sensor

Parameters

• mode (byte) – new mode

• *data – optional data to be send allong with mode, e.g., to turn on LEDs of a sensor

get()
Get measurement of the sensor corresponding to the active mode

Returns measurement

Return type tuple

9.1 Examples

9.1.1 Measure ambient light

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Color sensor
ColorSensor = Thub.port.A.device

Set mode to ambient light
ColorSensor.mode(2)

(continues on next page)

27

hub2hub, Release 0.1.0

(continued from previous page)

k = 0
while True:

Thub.led(k%11)

ambient, = ColorSensor.get()

print('Ambient light: ', ambient)

k+=1
sleep_ms(1000)

9.1.2 Control LEDs

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Color sensor connected to port A
ColorSensor = Thub.port.A.device

k = 0
while True:

Thub.led(k%11)

Led1 = 9 if k%3 == 0 else 0
Led2 = 9 if k%3 == 1 else 0
Led3 = 9 if k%3 == 2 else 0

ColorSensor.mode(3,[Led1, Led2, Led3])

k+=1
sleep_ms(1000)

28 Chapter 9. Device

CHAPTER

TEN

MOTOR

class Motor(hub, port, device)
Class to control PoweredUp motors

Supported on:

mode(mode)
Set the mode of the motor, this mainly affects the measurement output

Parameters mode (byte) – new mode

get()
Get measurement of the motor corresponding to the active mode

Returns measurement

Return type tuple

pwm(power)
Set motor power

Parameters power (int) – in range [-100,. . . , 100]

run_at_speed(speed, max_power=100, acceleration=100, deceleration=100)
Start motor at given speed

Parameters

• speed (int) – a percentage off the maximum speed of the motor in the range [-100,. . . ,
100]

• max_power (int) – maximum power that can be used by the motor

• acceleration (int) – the duration time for an acceleration from 0 to 100%. i.e. a time
set to 1000 ms. should give an acceleration time of 300 ms from 40% to 70%

• deceleration (int) – the duration time for a deceleration from 0 to 100%. i.e. a time
set to 1000 ms. should give an deceleration time of 300 ms from 70% to 40%

run_for_time(time, speed=50, max_power=100, acceleration=100, deceleration=100, stop_action=0)
Rotate motor for a given time

Parameters

• time – time in milliseconds

• speed (int) – a percentage off the maximum speed of the motor in the range [-100,. . . ,
100]

• max_power (int) – maximum power that can be used by the motor

29

hub2hub, Release 0.1.0

• acceleration (int) – the duration time for an acceleration from 0 to 100%. i.e. a time
set to 1000 ms. should give an acceleration time of 300 ms from 40% to 70%

• deceleration (int) – the duration time for a deceleration from 0 to 100%. i.e. a time
set to 1000 ms. should give an deceleration time of 300 ms from 70% to 40%

• stop_action (int) – action performed after the given time: float = 0, brake = 1,
hold = 2

run_for_degrees(degrees, speed=50, max_power=100, acceleration=100, deceleration=100,
stop_action=0)

Rotate motor for a given number of degrees relative to current position

Parameters

• degrees – relative degrees

• speed (int) – a percentage off the maximum speed of the motor in the range [-100,. . . ,
100]

• max_power (int) – maximum power that can be used by the motor

• acceleration (int) – the duration time for an acceleration from 0 to 100%. i.e. a time
set to 1000 ms. should give an acceleration time of 300 ms from 40% to 70%

• deceleration (int) – the duration time for a deceleration from 0 to 100%. i.e. a time
set to 1000 ms. should give an deceleration time of 300 ms from 70% to 40%

• stop_action (int) – action performed after the given time: float = 0, brake = 1,
hold = 2

run_to_position(degrees, speed=50, max_power=100, acceleration=100, deceleration=100,
stop_action=0)

Rotate motor for a given number of degrees relative to current position

Parameters

• degrees – relative degrees

• speed (int) – a percentage off the maximum speed of the motor in the range [-100,. . . ,
100]

• max_power (int) – maximum power that can be used by the motor

• acceleration (int) – the duration time for an acceleration from 0 to 100%. i.e. a time
set to 1000 ms. should give an acceleration time of 300 ms from 40% to 70%

• deceleration (int) – the duration time for a deceleration from 0 to 100%. i.e. a time
set to 1000 ms. should give an deceleration time of 300 ms from 70% to 40%

• stop_action (int) – action performed after the given time: float = 0, brake = 1,
hold = 2

float()
Float motor from current position

brake()
Brake motor at current position

hold()
Actively hold motor at current position

30 Chapter 10. Motor

hub2hub, Release 0.1.0

10.1 Example

10.1.1 Measure absolute position

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Servo motor connected to port A
Motor = Thub.port.A.motor

Set mode to absolute position
Motor.mode(3)

k = 0
while True:

Thub.led(k%11)

Get measurement
absolute_position, = motor.get()

print('Absolute position: ', absolute_position)

k+=1
sleep_ms(1000)

10.1.2 Run at constant speed

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Servo motor connected to port A
Motor = Thub.port.A.motor

Set speed to 50
Motor.run_at_speed(50)

(continues on next page)

10.1. Example 31

hub2hub, Release 0.1.0

(continued from previous page)

Wait 1 second
sleep_ms(1000)

Set speed to 0
Motor.run_at_speed(0)

10.1.3 Move to absolute position

from hub2hub import TechnicHub, ble_handler
from time import sleep_ms

Initialize ble handler and a technic hub
ble = ble_handler()
Thub = TechnicHub(ble)

connect to a technic hub: press green button on the technic hub
Thub.connect()

Servo motor connected to port A
Motor = Thub.port.A.motor

move to 180 degrees and hold
Motor.run_to_position(180,stop_action = 2)

sleep_ms(1000)

move to 0 and float
Motor.run_to_position(0, stop_action = 0)

32 Chapter 10. Motor

CHAPTER

ELEVEN

BARCODE

class Barcode
Class to handle barcode sensor

Supported on:

get()
Return current barcode and color

Returns barcode, color

Return type tuple

11.1 Example

from hub2hub import ble_handler, Mario
from time import sleep_ms

ble = ble_handler()
mario = Mario(ble)

mario.connect()

while True:
gesture = mario.motion.was_gesture(1024)
barcode, color = mario.barcode.get()
pants = mario.pants.get()
print('barcode: ', barcode, 'color: ', color, 'gesture: ', gesture, 'pants: ', pants)
sleep_ms(100)

33

hub2hub, Release 0.1.0

34 Chapter 11. Barcode

CHAPTER

TWELVE

MOTION MARIO

class MotionMario
Class to handle motion sensor in LEGO Mario

Supported on:

gesture()
Return active gesture

Returns gesture

Return type int

was_gesture(gesture)
Return if gesture was active since last call

Parameters gesture (int) – gesture to check

Returns True if gesture was active since last call, otherwise False

Return type boolean

12.1 Example

from hub2hub import ble_handler, Mario
from time import sleep_ms

ble = ble_handler()
mario = Mario(ble)

mario.connect()

while True:
gesture = mario.motion.was_gesture(1024)
barcode, color = mario.barcode.get()
pants = mario.pants.get()
print('barcode: ', barcode, 'color: ', color, 'gesture: ', gesture, 'pants: ', pants)
sleep_ms(100)

35

hub2hub, Release 0.1.0

36 Chapter 12. Motion Mario

CHAPTER

THIRTEEN

PANTS (MARIO)

class Pants
Class to detect a LEGO Mario pants

Supported on:

get()
Get current pants

Returns value corresponding to a pants

Return type int

13.1 Example

from hub2hub import ble_handler, Mario
from time import sleep_ms

ble = ble_handler()
mario = Mario(ble)

mario.connect()

while True:
gesture = mario.motion.was_gesture(1024)
barcode, color = mario.barcode.get()
pants = mario.pants.get()
print('barcode: ', barcode, 'color: ', color, 'gesture: ', gesture, 'pants: ', pants)
sleep_ms(100)

The hub2hub library is not part of the original firmware of either the Robot Inventor hub or the SPIKE Prime hub. In
the official SPIKE Prime firmware, a low-level ubluetooth library is available to be able to directly communicate over
Bluetooth Low Energy (BLE). The documentation of this module can be found here: ubluetooth documentation

The main goal of the hub2hub library is to simplify the python code required to setup and maintain a BLE connection
between LEGO hubs. Installation of the library and writing programs that use it are both possible via the official LEGO
Education SPIKE Prime app, as explained here.

This library is still actively developed, at the moment two different versions are available that cannot be installed at the
same time on a single hub.

37

https://docs.micropython.org/en/latest/library/ubluetooth.html

hub2hub, Release 0.1.0

• The latest version: 0.1.0 supports communication between a LEGO SPIKE Prime or LEGO MINDSTORMS
Robot Inventor hub with a PoweredUP hub. This version is documented on this page.

• The previous version: 0.0.3/0.0.4 supports communication between LEGO SPIKE Prime and LEGO MIND-
STORMS Robot Inventor hubs. This version is document here

In a future release functionalities of both versions will be combined.

38 Chapter 13. Pants (Mario)

https://hubmodule.readthedocs.io/en/latest/hub2hub

INDEX

A
accelerometer() (Motion method), 25

B
Barcode (class in hub2hub), 33
barcode (Mario attribute), 7
brake() (Motor method), 30
built-in function

Led(), 21
Button (class in hub2hub), 23

C
CityHub (built-in class), 4
connect() (PUPhub method), 19

D
device (CityHub.port.A attribute), 5
device (CityHub.port.B attribute), 5
Device (class in hub2hub), 27
device (TechnicHub.port.A attribute), 3
device (TechnicHub.port.B attribute), 3
device (TechnicHub.port.C attribute), 3
device (TechnicHub.port.D attribute), 3
disconnect() (PUPhub method), 19

F
float() (Motor method), 30

G
gesture() (MotionMario method), 35
get() (Barcode method), 33
get() (Device method), 27
get() (Motor method), 29
get() (Pants method), 37
gyroscope() (Motion method), 25

H
hold() (Motor method), 30

I
is_connected() (PUPhub method), 19

is_pressed() (Button method), 23

L
led (CityHub attribute), 5
led (Remote attribute), 6
led (TechnicHub attribute), 3
Led()

built-in function, 21

M
Mario (built-in class), 7
min (Remote.left attribute), 6
min (Remote.right attribute), 6
mode() (Device method), 27
mode() (Motor method), 29
Motion (class in hub2hub), 25
motion (Mario attribute), 7
motion (TechnicHub attribute), 3
MotionMario (class in hub2hub), 35
motor (CityHub.port.A attribute), 5
motor (CityHub.port.B attribute), 5
Motor (class in hub2hub), 29
motor (TechnicHub.port.A attribute), 3
motor (TechnicHub.port.B attribute), 3
motor (TechnicHub.port.C attribute), 3
motor (TechnicHub.port.D attribute), 3

P
Pants (class in hub2hub), 37
pants (Mario attribute), 7
plus (Remote.left attribute), 6
plus (Remote.right attribute), 6
presses() (Button method), 23
PUPhub (class in hub2hub), 19
pwm() (Motor method), 29

R
red (Remote.left attribute), 6
red (Remote.right attribute), 6
Remote (built-in class), 5
run_at_speed() (Motor method), 29
run_for_degrees() (Motor method), 30

39

hub2hub, Release 0.1.0

run_for_time() (Motor method), 29
run_to_position() (Motor method), 30

T
TechnicHub (built-in class), 3

W
was_gesture() (MotionMario method), 35
was_pressed() (Button method), 23

Y
yaw_pitch_roll() (Motion method), 25

40 Index

	Installation
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Hubs
	Technic Hub
	Example

	City Hub
	Example

	Remote
	Example

	Mario
	Example

	Sensors
	Color Sensor
	Examples
	Measure ambient light
	Control LEDs

	Ultrasonic Sensor
	Examples
	Measure distance
	Control LEDs

	Force Sensor
	Examples
	Measure RAW force

	Color/Distance Sensor
	Examples
	Measure distance

	WeDo Distance Sensor
	Examples
	Measure count

	WeDo Tilt Sensor
	Examples
	Measure tilt angles

	Motors
	Basic Motor
	Servomotors
	Example
	Run at constant speed

	PUPhub
	Example

	Led
	Example

	Button
	Example

	Motion
	Example

	Device
	Examples
	Measure ambient light
	Control LEDs

	Motor
	Example
	Measure absolute position
	Run at constant speed
	Move to absolute position

	Barcode
	Example

	Motion Mario
	Example

	Pants (Mario)
	Example

	Index

